Ardex Multiprime Ardex (Ardex Australia) Chemwatch Hazard Alert Code: 2 Issue Date: 19/01/2024 Print Date: 22/01/2024 L.GHS.AUS.EN.E Chemwatch: **5394-29**Version No: **5.1**Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements ## SECTION 1 Identification of the substance / mixture and of the company / undertaking | Р | ro | d | u | c | t I | d | e | n | ti | fi | е | r | |---|----|---|---|---|-----|---|---|---|----|----|---|---| |---|----|---|---|---|-----|---|---|---|----|----|---|---| | Product name | Ardex Multiprime | | | | | |-------------------------------|------------------|--|--|--|--| | Chemical Name | Not Applicable | | | | | | Synonyms | Not Available | | | | | | Chemical formula | Not Applicable | | | | | | Other means of identification | Not Available | | | | | ## Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Prime various building substrates to increase the adhesion of adhesives o water-proofing membranes to the substrates. Application is via brush or roller. ## Details of the manufacturer or supplier of the safety data sheet | Registered company name | Ardex (Ardex Australia) | | | |-------------------------|---|--|--| | Address | 20 Powers Road Seven Hills NSW 2147 Australia | | | | Telephone | 1800 224 070 | | | | Fax | 1300 780 102 | | | | Website | www.ardexaustralia.com | | | | Email | sales@ardexaustralia.com | | | ## Emergency telephone number | Association / Organisation | Ardex (Ardex Australia) | | | |-----------------------------------|---------------------------------|--|--| | Emergency telephone numbers | 1800 224 070 (Mon-Fri, 9am-5pm) | | | | Other emergency telephone numbers | Not Available | | | ## **SECTION 2 Hazards identification** ## Classification of the substance or mixture ## HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | |--------------------|---| | Classification [1] | Sensitisation (Skin) Category 1 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | ## Label elements Hazard pictogram(s) Signal word Warning Chemwatch: **5394-29**Version No: **5.1** # Page 2 of 11 Ardex Multiprime Issue Date: 19/01/2024 Print Date: 22/01/2024 #### Hazard statement(s) | H317 | May cause an allergic skin reaction. | | | | |--|--|--|--|--| | | | | | | | Precautionary statement(s) Pre | evention | | | | | P280 | Wear protective gloves and protective clothing. | | | | | P261 Avoid breathing mist/vapours/spray. | | | | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | | | ## Precautionary statement(s) Response | P302+P352 IF ON SKIN: Wash with plenty of water. | | | | |--|--|--|--| | P333+P313 If skin irritation or rash occurs: Get medical advice/attention. | | | | | P362+P364 Take off contaminated clothing and wash it before reuse. | | | | ## Precautionary statement(s) Storage Not Applicable ## Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. ## **SECTION 3 Composition / information on ingredients** ## Substances See section below for composition of Mixtures ## Mixtures | CAS No %[weight] | | Name | | | |---|--|--|--|--| | 2682-20-4 <1 <u>2-methyl-4-isothiazolin-3-one</u> | | 2-methyl-4-isothiazolin-3-one | | | | Not Available >60 | | Ingredients determined not to be hazardous | | | | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | | | ## **SECTION 4 First aid measures** ## Description of first aid measures | • | | |--------------|---| | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | ## Indication of any immediate medical attention and special treatment needed Treat symptomatically. ## **SECTION 5 Firefighting measures** ## Extinguishing media The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas. Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances. In such an event consider: - n such an e ▶ foam. - b dry chemical powder. - carbon dioxide. ## Special hazards arising from the substrate or mixture Fire Incompatibility None known. Chemwatch: 5394-29 Page 3 of 11 Issue Date: 19/01/2024 Version No: 5.1 Print Date: 22/01/2024 ## **Ardex Multiprime** Advice for firefighters ▶ Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. ▶ Use fire fighting procedures suitable for surrounding area. Fire Fighting DO NOT approach containers suspected to be hot. ▶ Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. ▶ Equipment should be thoroughly decontaminated after use ▶ The material is not readily combustible under normal conditions. ▶ However, it will break down under fire conditions and the organic component may burn. Not considered to be a significant fire risk. ▶ Heat may cause expansion or decomposition with violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Decomposes on heating and produces toxic fumes of: Fire/Explosion Hazard carbon dioxide (CO2) nitrogen oxides (NOx) sulfur oxides (SOx) CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. other pyrolysis products typical of burning organic material. Foaming may cause overflow of containers and may result in possible fire. ## **HAZCHEM SECTION 6 Accidental release measures** ## Personal precautions, protective equipment and emergency procedures May emit poisonous fumes. May emit corrosive fumes. See section 8 ## **Environmental precautions** See section 12 ## Methods and material for containment and cleaning up | | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. | |--------------|---| | Minor Spills | Contain and absorb spill with
sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | | Major Spills | Absorb or contain isothiazolinone liquid spills with sand, earth, inert material or vermiculite. The absorbent (and surface soil to a depth sufficient to remove all of the biocide) should be shovelled into a drum and treated with an 11% solution of sodium metabisulfite (Na2S205) or sodium bisulfite (NaHSO3), or 12% sodium sulfite (Na2SO3) and 8% hydrochloric acid (HCl). Glutathione has also been used to inactivate the isothiazolinones. Use 20 volumes of decontaminating solution for each volume of biocide, and let containers stand for at least 30 minutes to deactivate microbicide before disposal. If contamination of drains or waterways occurs, advise emergency services. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. | Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 Handling and storage** | Precautions for safe handling | | |-------------------------------|---| | Safe handling | DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. | | Other information | Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | Chemwatch: 5394-29 Version No: 5.1 ## Ardex Multiprime Issue Date: 19/01/2024 Print Date: 22/01/2024 ## Conditions for safe storage, including any incompatibilities ## Suitable container - ► Polyethylene or polypropylene container. - Packing as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. #### Formaldehyde: - is a strong reducing agent - may polymerise in air unless properly inhibited (usually with methanol up to 15%) and stored at controlled temperatures - will polymerize with active organic material such as phenol - reacts violently with strong oxidisers, hydrogen peroxide, potassium permanganate, acrylonitrile, caustics (sodium hydroxide, yielding formic acid and flammable hydrogen), magnesium carbonate, nitromethane, nitrogen oxides (especially a elevated temperatures), peroxyformic acid - is incompatible with strong acids (hydrochloric acid forms carcinogenic bis(chloromethyl)ether*), amines, ammonia, aniline, bisulfides, gelatin, iodine, magnesite, phenol, some monomers, tannins, salts of copper, iron, silver. - acid catalysis can produce impurities: methylal, methyl formate #### Aqueous solutions of formaldehyde: - slowly oxidise in air to produce formic acid - Storage incompatibility attack carbon steel Concentrated solutions containing formaldehyde are: - unstable, both oxidising slowly to form formic acid and polymerising; in dilute aqueous solutions formaldehyde appears as monomeric hydrate (methylene glycol) - the more concentrated the solution the more polyoxymethylene glycol occurs as oligomers and polymers (methanol and amine-containing compounds inhibit polymer formation) - readily subject to polymerisation, at room temperature, in the presence of air and moisture, to form paraformaldehyde (8-100 units of formaldehyde), a solid mixture of linear polyoxymethylene glycols containing 90-99% formaldehyde; a cyclic trimer, trioxane (CH2O3), may also form TEEL -3 Flammable and/or toxic gases are generated by the combination of aldehydes with azo, diazo compounds, dithiocarbamates, nitrides, and strong reducing agents *The empirical equation may be used to determine the concentration of bis(chloromethyl)ether (BCME) formed by reaction with HCl: log(BCME)ppb = -2.25 + 0.67• log(HCHO) ppm + 0.77• log(HCl)ppm Assume values for formaldehyde, in air, of 1 ppm and for HCl of 5 ppm, resulting BCME concentration, in air, would be 0.02 ppb. None known ## SECTION 8 Exposure controls / personal protection TEEL-1 #### Control parameters Occupational Exposure Limits (OEL) INGREDIENT DATA Not Available Ingredient #### **Emergency Limits** | ingrodione | ' = = - · | 1 | | 1 7 | |-------------------------------|---------------|---------------|---------------|---------------| | Ardex Multiprime | Not Available | Not Available | | Not Available | | | | | | | | Ingredient | Original IDLH | | Revised IDLH | | | 2 mathyl 4 jacthiazalia 2 ana | Not Available | | Not Available | | TEFI -2 ## Occupational Exposure Banding | Ingredient | ccupational Exposure Band Rating Occupational Exposure Band Limit | | | | | |-------------------------------|--|--|--|--|--| | 2-methyl-4-isothiazolin-3-one | D > 0.01 to ≤ 0.1 mg/m³ | | | | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | | | ## MATERIAL DATA ## Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. ## Appropriate engineering controls General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer
loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Chemwatch: 5394-29 Page 5 of 11 Issue Date: 19/01/2024 Version No: 5.1 Print Date: 22/01/2024 ### **Ardex Multiprime** Within each range the appropriate value depends on: Lower end of the range 1: Room air currents minimal or favourable to capture 2: Contaminants of low toxicity or of nuisance value only. 3: Intermittent, low production. Upper end of the range 1: Disturbing room air currents 2: Contaminants of high toxicity 3: High production, heavy use Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. 4: Small hood-local control only ## Individual protection measures, such as personal protective equipment 4: Large hood or large air mass in motion ## Eye and face protection #### Safety glasses with side shields. - Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. #### Skin protection Hands/feet protection ### See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber #### NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - \cdot chemical resistance of glove material, - · glove thickness and - · dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. - As defined in ASTM F-739-96 in any application, gloves are rated as: - \cdot Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - Butyl rubber gloves - Nitrile rubber gloves (Note: Nitric acid penetrates nitrile gloves in a few minutes.) ## Body protection ## See Other protection below ## Other protection ## Overalls. - P.V.C apron.Barrier cream. - Skin cleansing cream. - Eye wash unit. ## Recommended material(s) GLOVE SELECTION INDEX Version No: 5.1 ## **Ardex Multiprime** Issue Date: **19/01/2024**Print Date: **22/01/2024** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Ardex Multiprime | Material | СРІ | |-------------------|-----| | BUTYL | A | | NEOPRENE | В | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | PE | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | SARANEX-23 | С | | TEFLON | С | | VITON | С | ^{*} CPI - Chemwatch Performance Index **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Ansell Glove Selection | Glove — In order of recomm | endation | |----------------------------|----------| | AlphaTec® 15-554 | | | AlphaTec® Solvex® 37-185 | | | AlphaTec® 38-612 | | | AlphaTec® 58-008 | | | AlphaTec® 58-530B | | | AlphaTec® 58-530W | | | AlphaTec® 58-735 | | | AlphaTec® 79-700 | | | AlphaTec® Solvex® 37-675 | | | AlphaTec® 02-100 | | | | | The suggested gloves for use should be confirmed with the glove supplier. ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | BAX-AUS /
Class1 | - | | up to 50 | 1000 | - | BAX-AUS /
Class 1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | BAX-2 | | up to 100 | 10000 | - | BAX-3 | | 100+ | | | Airline** | - * Continuous Flow ** Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge
respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used ## **SECTION 9 Physical and chemical properties** ## Information on basic physical and chemical properties | Appearance | White milky liquid with slight characteristic odour; mixes with water. | | | | | | |--|--|--|----------------|--|--|--| | Physical state | Liquid | Liquid Relative density (Water = 1) 1.01 approx. | | | | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | | | | pH (as supplied) | 8.0 | Decomposition temperature (°C) | Not Available | | | | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | | | | Initial boiling point and boiling range (°C) | 100 | Molecular weight (g/mol) | Not Applicable | | | | | Flash point (°C) | Not Applicable | Taste | Not Available | | | | | Evaporation rate | Not Available | Explosive properties | Not Available | | | | | Flammability | Not Applicable | Oxidising properties | Not Available | | | | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | | | A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion ## **Ardex Multiprime** Issue Date: 19/01/2024 Print Date: 22/01/2024 | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | |---------------------------|-----------------|---------------------------|---------------| | Vapour pressure (kPa) | 2.26 @ 20C | Gas group | Not Available | | Solubility in water | Partly miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | <1 | VOC g/L | Not Available | ## **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | | ormation on toxicological ef | fects | |------------------------------|--| | Inhaled | The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other outer and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Not normally a hazard due to non-volatile nature of product Inhalation of oil droplets/ aerosols may cause discomfort and may produce chemical pneumonitis. | | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. | | 900 | The state of s | | Skin Contact | Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Solutions of 0.5% strength 1,2-benzisothiazoline-3-one (BIT) are irritating to the skin. Allergenic effects also begin at 0.05% and have been confirmed in a series of case and patch test studies. When the substance was applied to human volunteers under an occlusive patch the maximum tolerated doses was 0.05%. Five hours after application of 0.1% (1000 ppm) one person showed moderate erythema with papule development which was interpreted as a reaction to the sticking plaster; in four persons there was mild reddening of the skin. The reaction had ameliorated in several persons after 72 hours. A second application produced various severe dermal reactions (erythema and papules) in 8 persons. A third application to several of the group produced erythema. Provocation tests with BIT showed the material to be sensitising. Of 20 metal workers with dermatitis, 4 were shown to have been sensitised to BIT in cutting oils. Cases of contact eczema in workers producing polyacrylate emulsions for paints and wax polish, in which BIT was the preservative, have been described. Epicutaneous challenge tests to BIT were positive. Similar findings have been described in the papermanufacturing i | | Eye | Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | Chronic | Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose t asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers. Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate
consultation with an occupational health professional over the degree of risk and level of surveillance. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non- | The isothiazolinones are known contact sensitisers. Data are presented which demonstrate that, in comparison with the chlorinated and Chemwatch: 5394-29 Page 8 of 11 Issue Date: 19/01/2024 Version No: 5.1 #### Ardex Multiprime Print Date: 22/01/2024 dichlorinated compounds which share immunological cross-reactivity, the non-chlorinated isothiazolinones have a lower potential for sensitization and no documented immunological cross-reaction with the chlorinated isothiazolinones. The risk of sensitization depends on how contact with the product occurs. The risk is greater when the skin barrier has been damaged and smaller when the skin is healthy. Dermatological studies have demonstrated that mixed isothiazolinone concentrations below 20 ppm may cause sensitisation and that allergic reactions can be provoked in sensitized persons even with concentrations in the range of 7-15 ppm active isothiazolinones. The isothiazolinones are a group of heterocyclic sulfur-containing compounds. In general all are electrophilic molecules containing an activated N-S bond that enables them with nucleophilic cell entities, thus exerting biocidal activity. A vinyl activated chlorine atom makes allows to molecule to exert greater antimicrobial efficiency but at the same time produces a greater potential for sensitisation. Several conclusions relating to the sensitising characteristics of the isothiazolinones may therefore be drawn* - The strongest sensitisers are the chlorinated isothiazolinones. - There are known immunological cross-reactions between at least 2 different chlorinated isothiazolinones. - There appears to be no immunological cross reaction between non-chlorinated isothiazolinones and chlorinated isothiazolinones. - Although classified as sensitisers, the nonchlorinated isothiazolinones are considerably less potent sensitisers than are the chlorinated - By avoiding the use of chlorinated isothiazolinones, the potential to induce sensitisation is greatly reduced. - Despite a significant percentage of the population having been previously sensitised to chlorinated and non-chlorinated species, it is likely that careful and judicious use of non-chlorinated isothiazolinones will result in reduced risk of allergic reactions in those persons. - Although presently available data promise that several non-chlorinated isothiazolinones will offer effective antimicrobial protection in industrial and personal care products, it is only with the passage of time that proof of their safety in use or otherwise will become available. * B.R. Alexander: Contact Dermatitis 2002, 46, pp 191-196 Although there have been conflicting reports in the literature, it has been reported by several investigators that isothiazolinones are mutagenic in Salmonella typhimurium strains (Ames test). Negative results were obtained in studies of the DNA-damaging potential of mixed isothiazolinones (Kathon) in mammalian cells in vitro and of cytogenetic effects and DNA-binding in vivo. The addition of rat liver S-9 (metabolic activation) reduced toxicity but did not eliminate mutagenicity. These compounds bind to the proteins in the S-9. At higher concentrations of Kathon the increase in mutagenicity may be due to an excess of unbound active compounds. A study of cutaneous application of Kathon CG in 30 months, three times per week at a concentration of 400 ppm (0.04%) a.i. had no local or systemic tumourigenic effect in male mice. No dermal or systemic carcinogenic potential was observed. Reproduction and teratogenicity studies with rats, given isothiazolinone doses of 1.4-14 mg/kg/day orally from day 6 to day 15 of gestation, showed no treatment related effects in either the dams or in the foetuses | Ardex Multiprime | TOXICITY | IRRITATION | | |-------------------------------|--|---|--| | | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | | dermal (rat) LD50: 242 mg/kg ^[1] | Eye: adverse effect observed (irreversible damage) ^[1] | | | 2-methyl-4-isothiazolin-3-one | Inhalation(Rat) LC50: 0.1 mg/l4h ^[1] | Skin: adverse effect observed (corrosive) ^[1] | | | | Oral (Rat) LD50: 120 mg/kg ^[1] | | | | | | | | | Legend: | Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | Considered to be a minor sensitiser in Kathon CG (1) (1). Bruze et al - Contact Dermatitis 20: 219-39, 1989 The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of appropriate studies with similar materials using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies. In light of potential adverse effects, and to ensure a harmonised risk assessment and management, the EU regulatory framework for biocides has been established with the objective of ensuring a high level of protection of human and animal health and the environment. To this aim, it is required that risk assessment of biocidal products is carried out before they can be placed on the market. A central element in the risk assessment of the biocidal products are the utilization instructions that defines the dosage, application method and amount of applications and thus the exposure of humans and the environment to the biocidal substance. Humans may be exposed to biocidal products in different ways in both occupational and domestic settings. Many biocidal products are intended for industrial sectors or professional uses only, whereas other biocidal products are commonly available for private use by non-professional users. In addition, potential exposure of non-users of biocidal products (i.e. the general public) may occur indirectly via the environment, for example through drinking water, the food chain, as well as through atmospheric and residential exposure. Particular attention should be paid to the exposure of vulnerable sub-populations, such as the elderly, pregnant women, and children. Also pets and other domestic animals can be exposed indirectly following the application of biocidal products. Furthermore, exposure to biocides may vary in terms of route (inhalation, dermal contact, and ingestion) and pathway (food, drinking water, residential, occupational) of exposure, level, frequency and duration. No significant acute toxicological data identified in literature search. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce coniunctivitis The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. The European Union has reclassified several formaldehyde-releasing agents
(FRAs) such as methylenedimorpholine (MBM), oxazolidine (MBO) and hydroxypropylamine (HPT) as category 1B carcinogens. Previously, formaldehyde itself was classed as a carcinogen - but formaldehyde- #### 2-METHYL-4-ISOTHIAZOLIN-3-ONE Chemwatch: 5394-29 Page 9 of 11 Version No: 5.1 ## **Ardex Multiprime** Issue Date: 19/01/2024 Print Date: 22/01/2024 releasing agents were not. This is no longer the case. Based on this regulation, formulations for which the maximum theoretical concentration of releasable formaldehyde is more than > 1000 ppm (>0.1%), have to be labelled as carcinogenic. Water mix metalworking fluids are subject to contamination by bacteria and fungi, and the control of this is an essential part of good fluid maintenance. The use of preservatives both within the formulation and tank-side treatment plays a significant contribution in the protection of potentially harmful microbes that could cause health problems for workers. A large proportion of bactericides on the market today are classed as formaldehyde releasing biocides which means that under specific conditions they release small amounts of formaldehyde – this is their mode of action in the presence of bacteria. Although they are effective as a biocide their use may become restricted or unfavourable due to potential changes in legislation. A decision by the ECHA (European Chemicals Agency) was made to re-classify formaldehyde as a category 1b H350 carcinogen and category 2 mutagen in June 2015. It has also been proposed by the ECHA Risk Assessment Committee (RAC) that formaldehyde release biocides should be classified the same as formaldehyde because formaldehyde is released when these substances come into contact under favorable conditions (i.e. interaction with microorganisms). Formaldehyde generators (releasers) are often used as preservatives (antimicrobials, biocides, microbiocides). Formaldehyde may be generated following hydrolysis. The most widely used antimicrobial compounds function by releasing formaldehyde once inside the microbe cell. Some release detectable levels of formaldehyde into the air space, above working solutions, especially when pH has dropped. Many countries are placing regulatory pressure on suppliers and users to replace formaldehyde generators. Formaldehyde generators are a diverse group of chemicals that can be recognised by a small, easily detachable formaldehyde moiety, prepared by reacting an amino alcohol with formaldehyde ("formaldehyde-condensates"), There is concern that when formaldehyde-releasing preservatives are present in a formulation that also includes amines, such as triethanolamine (TEA), diethanolamine (DEA), or monoethanolamine (MEA), nitrosamines can be formed,; nitrosamines are carcinogenic substances that can potentially penetrate skin. One widely-discussed hypothesis states that formaldehyde-condensate biocides, such as triazines and oxazolidines, may cause an imbalance in the microbial flora of in-use metalworking fluids (MWFs). The hypothesis further asserts that this putative microbial imbalance favours the proliferation of certain nontuberculosis mycobacteria (NTM) in MWFs and that the subsequent inhalation of NTM-containing aerosols can cause hypersensitivity pneumonitis (HP), also known as extrinsic allergic alveolitis, in a small percentage of susceptible workers. Symptoms of HP include flu-like illness accompanied by chronic dyspnea, i.e., difficult or laboured respiration According to Annex VI of the Cosmetic Directive 76/768/EC, the maximum authorised concentration of free formaldehyde is 0.2% (2000 ppm). In addition, the provisions of Annex VI state that, All finished products containing formaldehyde or substances in this Annex and which release formaldehyde must be labelled with the warning "contains formaldehyde" where the concentration of formaldehyde in the finished product exceeds 0.05%. Formaldehyde-releasing preservatives have the ability to release formaldehyde in very small amounts over time. The use of formaldehyde-releasing preservatives ensures that the actual level of free formaldehyde in the products is always very low but at the same time sufficient to ensure absence of microbial growth. The formaldehyde reacts most rapidly with organic and inorganic anions, amino and sulfide groups and electron-rich groups to disrupt metabolic processes, eventually causing death of the organism. NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | X | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | X | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | X | Legend: X - Data either not available or does not fill the criteria for classification Data available to make classification ## **SECTION 12 Ecological information** ## Toxicity | | Endpoint | Test Duration (hr) | Species | | Value | Source | |-------------------------------|------------------|--------------------|-------------------------------|-----------------------------|--------------|------------------| | Ardex Multiprime | Not
Available | Not Available | Not Available | Not Available Not Available | | Not
Available | | 2-methyl-4-isothiazolin-3-one | Endpoint | Test Duration (hr) | Species | Valu | ıe | Source | | | EC50 | 72h | Algae or other aquatic plants | 0.057mg/L | | 2 | | | EC50 | 48h | Crustacea | 0.189-0.257mg/L | | 4 | | | EC50 | 96h | Algae or other aquatic plants | 0.06 | 31mg/L | 2 | | | LC50 | 96h | Fish | 0.08 | 31-0.122mg/L | 4 | | | NOEC(ECx) | 96h | Algae or other aquatic plants | 0.01 | mg/l | 2 | | | | | | | | | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data ## DO NOT discharge into sewer or waterways ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-------------------------------|-------------------------|------------------| | 2-methyl-4-isothiazolin-3-one | HIGH | HIGH | ## **Bioaccumulative potential** | Ingredient | Bioaccumulation | | |-------------------------------|------------------------|--| | 2-methyl-4-isothiazolin-3-one | LOW (LogKOW = -0.8767) | | ## Mobility in soil Issue Date: 19/01/2024 Print Date: 22/01/2024 | Ingredient | Mobility | |-------------------------------|-------------------| | 2-methyl-4-isothiazolin-3-one | LOW (KOC = 27.88) | ## **SECTION 13 Disposal considerations** ## Waste treatment methods - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. #### Product / Packaging disposal - Recycle wherever possible. Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ## **SECTION 14 Transport information** ## **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS ## 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-------------------------------|---------------| | 2-methyl-4-isothiazolin-3-one | Not Available | ## 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |-------------------------------|---------------| | 2-methyl-4-isothiazolin-3-one | Not Available | ## **SECTION 15 Regulatory information** ## Safety, health and environmental regulations / legislation specific for the substance or mixture ## 2-methyl-4-isothiazolin-3-one is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals $\label{eq:australia} \textbf{Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule \ 6}$ Australian Inventory of Industrial Chemicals (AIIC) ## Additional Regulatory Information Not Applicable ## National Inventory Status | National Inventory Status | | | | |--|------------------------------------|--|--| | National Inventory | Status | | | | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | | Canada - DSL | Yes | | | | Canada - NDSL | No (2-methyl-4-isothiazolin-3-one) | | | | China - IECSC | Yes | | | | Europe - EINEC / ELINCS / NLP | Yes | | | | Japan - ENCS | Yes | | | | Korea - KECI | Yes | | | | New Zealand - NZIoC | Yes | | | | Philippines - PICCS | Yes | | | | USA - TSCA | Yes | | | | Taiwan - TCSI | Yes | | | | Mexico - INSQ | Yes | | | # Page 11 of 11 Ardex Multiprime Issue Date: 19/01/2024 Print Date: 22/01/2024 | National Inventory | Status | |--------------------
---| | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | #### **SECTION 16 Other information** | Revision Date | 19/01/2024 | |---------------|------------| | Initial Date | 03/04/2020 | ## **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|---| | 4.1 | 10/03/2023 | Classification change due to full database hazard calculation/update. | | 5.1 | 19/01/2024 | Hazards identification - Classification, Composition / information on ingredients - Ingredients | ## Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ► IARC: International Agency for Research on Cancer - ACGIH: American Conference of Governmental Industrial Hygienists - STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit, - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ES: Exposure Standard - OSF: Odour Safety Factor - ▶ NOAEL: No Observed Adverse Effect Level - ► LOAEL: Lowest Observed Adverse Effect Level - ► TLV: Threshold Limit Value - ▶ LOD: Limit Of Detection - ► OTV: Odour Threshold Value - ► BCF: BioConcentration Factors - ▶ BEI: Biological Exposure Index - DNEL: Derived No-Effect Level - ► PNEC: Predicted no-effect concentration - ▶ AIIC: Australian Inventory of Industrial Chemicals - ► DSL: Domestic Substances List - ► NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ► ELINCS: European List of Notified Chemical Substances - NLP: No-Longer Polymers - ► ENCS: Existing and New Chemical Substances Inventory - ► KECI: Korea Existing Chemicals Inventory - ▶ NZIoC: New Zealand Inventory of Chemicals - ► PICCS: Philippine Inventory of Chemicals and Chemical Substances - ► TSCA: Toxic Substances Control Act - TCSI: Taiwan Chemical Substance Inventory - ▶ INSQ: Inventario Nacional de Sustancias Químicas - ► NCI: National Chemical Inventory - FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.